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Peter rolls an unbiased six-sided die fifty times and doesn’t 
roll a six once. He says, “I must get a six soon!”

Independent events

No. Each roll of the die is unaffected by the previous outcomes,
so the next roll of the die is no more likely to be a six than any of the 
other rolls. The probability is still . 1

6

Is Peter correct?

Events are independent if the outcome of one has 
no effect on the outcome of the other.

This is an example of independent events.
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Independent or dependent?
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To find the probability of two independent events, their 
separate probabilities are multiplied together:

Combining independent probabilities

This rule applies only when events are independent. It also 
applies to multiple independent events. For example:

P(A ∩ B)  =  P(A) × P(B)

P(A ∩ B ∩ C)  =  P(A) × P(B) × P(C)

When rolling a standard die, what is the probability of 
rolling a 6 five times in a row?

×
1
6

1
6

1
6

1
6

1
6

× × × =
1

36
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Independent events

× =1
6

When rolling a dice twice, what is the probability the first 
roll will be a one and second will be an even number? 

number of possible results:

number of successful results:

method 1: use the table

method 2: use the formula

multiply the probability of each roll, 
P(rolling a 1) × P(rolling an even 
number):

36

3

P(1 ∩ 2)  =  3
36

3
6

3
36

= 1
12

= 1
12

second roll

fir
st

 ro
ll

1
2

3

4

5

6

1 2 3 4 5 6
1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6
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second roll

fir
st

 ro
ll

1
2

3

4

5

6

1 2 3 4 5 6
1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4 2,5 2,6

3,1 3,2 3,3 3,4 3,5 3,6

4,1 4,2 4,3 4,4 4,5 4,6

5,1 5,2 5,3 5,4 5,5 5,6

6,1 6,2 6,3 6,4 6,5 6,6

P(1 ∩ even)  =  P (1) × P (even)

= ×

=

=

Use the table.

Use the table and formula to find the  probability of getting 
a 1 on the first roll and an even number on the second.

1
6

3
6

3
36

3
36

1
12

Use the formula.

successful outcomes
possible outcomes =

Independent events

= 1
12
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Combining probabilities
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grade blonde brown red other total
9th

10th

11th

total 14

5
4
5

53

17
18
18

80

25
28
28

121

38
41
42

85
91
93
269

Frequency tables

This is the result of a survey of student grade and hair color:

Use the rule P(A ∩ B)  =  P(A) × P(B) to decide if 
P(brown ∩ 11th grade) are independent events or not.

prove P(brown ∩ 11th grade)  =  P(brown) × P(11th grade)
P(brown ∩ 11th grade)  = =  0.10

P(brown) × P(11th grade)  =

28
269
80

269
93

269× =  0.10

These events are independent.
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Frequency tables

What is P(blonde ∩ 10th grade)?
find the P(10th grade):

find the P (blonde):

find P (blonde ∩ 10th grade):

91  ÷ 269  =  0.34

121  ÷ 269  =  0.45

0.34 × 0.45 = 0.15
or divide the instances of blonde 

10th graders by total students: 41  ÷ 269  =  0.15

What is P(11th grade ∩ not red haired)?

grade blonde brown red other total
9th

10th

11th

total 14

5
4
5

53

17
18
18

80

25
28
28

121

38
41
42

85
91
93
269
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Tree diagrams for independent events

Sarah has fifteen playing cards left from an incomplete 
pack. Six of the cards are red and the rest are black.

P(red card)  = 6
15

=  0.4

Sarah picks a card at random from the pack, replaces it and 
then picks another. If she picks two red cards, she will go to a 
party. Otherwise, she will stay in and do homework. 

What is the decimal probability of choosing 
a red card at random from the pack?

What is the probability that Sarah will go to the party and 
the probability that she will stay in to do homework?
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Tree diagrams for independent events
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Georgia passes through three sets of traffic 
lights on her drive to work.

Illustrate the situation using a tree diagram. What is the 
probability that Georgia has to stop at least twice on her 
way to work?

 1st set: 0.6
 2nd set: 0.1
 3rd set: 0.2

By repeating the journey many times, she 
has found the probability of having to stop at 
each set of lights: 

Tree diagrams for independent events
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Tree diagrams
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Proving independent events

Use the formula to prove that stopping at the first red 
light and the third red light are independent events, 
P(1st red ∩ 3rd red)  =  P(1st red) × P (3rd red).

P(1st red)  =  0.6

P(3rd red)  =  0.2

probability of stopping at the 1st red:

probability of stopping at the 3rd red:

find all outcomes where she stops at 
the 1st and 3rd red lights:

0.012 + 0.108 = 0.12add the probabilities of these outcomes:

P(RRR) and P(RGR) 

evaluate: 0.6 × 0.2  =  0.12

P(1st red ∩ 3rd red)  =  P(1st red) × P(3rd red) 
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