

Boardworks High School Science

Types of Formulae

Types of formulae

The empirical formula of a compound shows the relative numbers of atoms of each element present, using the smallest whole numbers of atoms.

For example, the empirical formula of hydrogen peroxide is **HO** – the ratio of hydrogen to oxygen is 1:1.

The molecular formula of a compound gives the actual numbers of atoms of each element in a molecule.

The molecular formula of hydrogen peroxide is H_2O_2 – there are two atoms of hydrogen and two atoms of oxygen in each molecule.

Determining empirical formulae

Determining the empirical formula of magnesium oxide

The empirical formula of magnesium oxide can be determined experimentally.

Click "play" to find how this is done.

Percentage by mass

Elemental analysis is an analytical technique used to determine the percentage by mass of certain elements present in a compound.

To work out the empirical formula, the total mass of the compound is assumed to be 100g, and each percentage is turned into a mass in grams.

If necessary, the mass of any elements not given by elemental analysis is calculated. The empirical formula of the compound can then be calculated as normal.

4 of 7 — © Boardworks Ltd 2009

Calculating empirical formulae

Calculating empirical formulae: examples

Empirical formula of phosphorus oxide

What is the empirical formula of phosphorus(V) oxide given that 1.95g of phosphorus combine with oxygen to form 4.45g of the oxide?

- 1. Calculate any unknown mass oxygen = 4.45 1.95 masses of elements: = 2.5g
- 2. Calculate number of moles phosphorus = 1.95 / 31.0 moles of each element: = 0.063

moles oxygen =
$$2.5 / 16.0$$

= 0.16

object Scre

Calculating molecular formulae

The molecular formula can be found by dividing the M_r by the relative mass of the empirical formula.

Example: What is the molecular formula of hydrogen peroxide given that its empirical formula is HO and the M_r is 34?

- Determine relative mass of empirical formula:
 empirical formula mass = H + O = 1.0 + 16.0 = 17
- **2.** Divide M_r by mass of empirical formula to get a multiple:

multiple =
$$\frac{\text{relative molecular mass}}{\text{mass of empirical formula}} = \frac{34}{17} = 2$$

3. Multiply empirical formula by multiple:

$$HO \times 2 = H_2O_2$$

Formulae calculations

Empirical and molecular formulae calculations

Question: 1/6

What is the empirical formula of a sulfur oxide containing 6.42g of sulfur and 3.20g of oxygen?

SO

SO₂

SO₃

S₇**O**₂

