

Dissolving words

Can you fill in the missing words in the sentences below?

If a substance CAN be dissolved it is called

If a substance CANNOT be dissolved it is called

Solubility is defined as:

the amount of a substance that will dissolve in 1 dm^3 of water at 25°C ($1 \text{ dm}^3 = 1000 \text{ cm}^3 = 1 \text{ liter}$)

For example, the solubility of sodium chloride is 360 g/dm³.

Q1) What would happen if you added more than 360 g of sodium chloride to 1 dm³ of water?

Q2) What mass of sodium chloride would dissolve in 2 dm³ of water at 25°C?

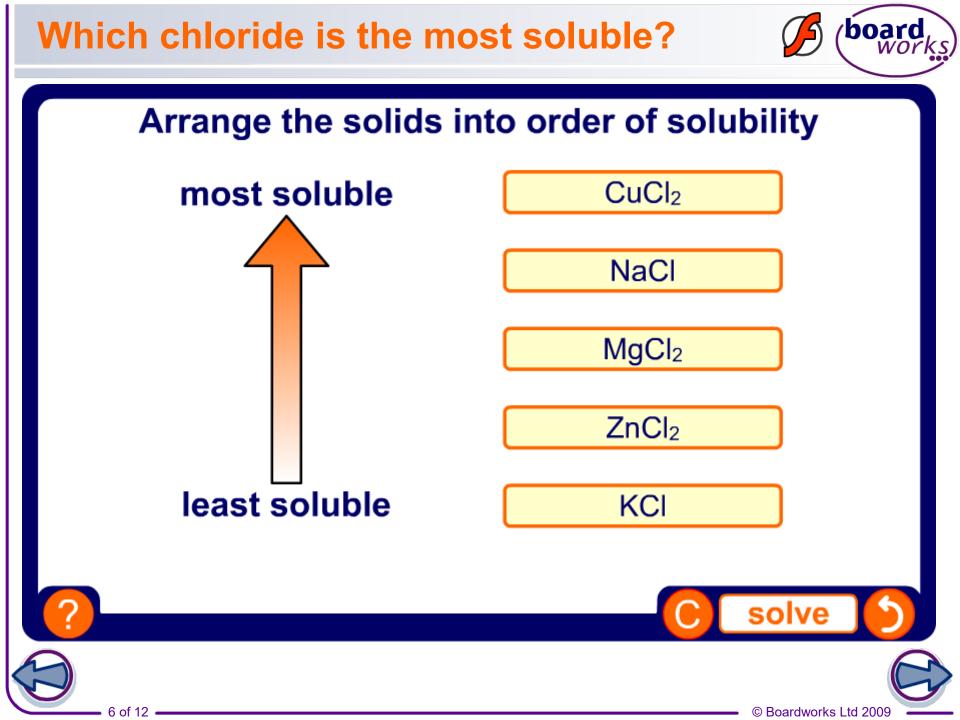
Q3) What mass of sodium chloride would dissolve in 500 cm³ of water at 25°C?

An experiment was carried out to determine the solubility of a number of solid chlorides. Here are the results:

chloride	volume of water	mass of chloride that dissolved	
CuCl ₂	200 cm ³	151 g	
MgCl ₂	150 cm ³	80 g	
KCI	100 cm ³	30 g	
NaCl	200 cm ³	72g	
ZnCl ₂	150 cm ³	618g	

How can you use the results to calculate the solubility in g/dm³ of each solid?

How to calculate solubility


How is the solubility of solid chlorides calculated?

Click "**play**" to find out.

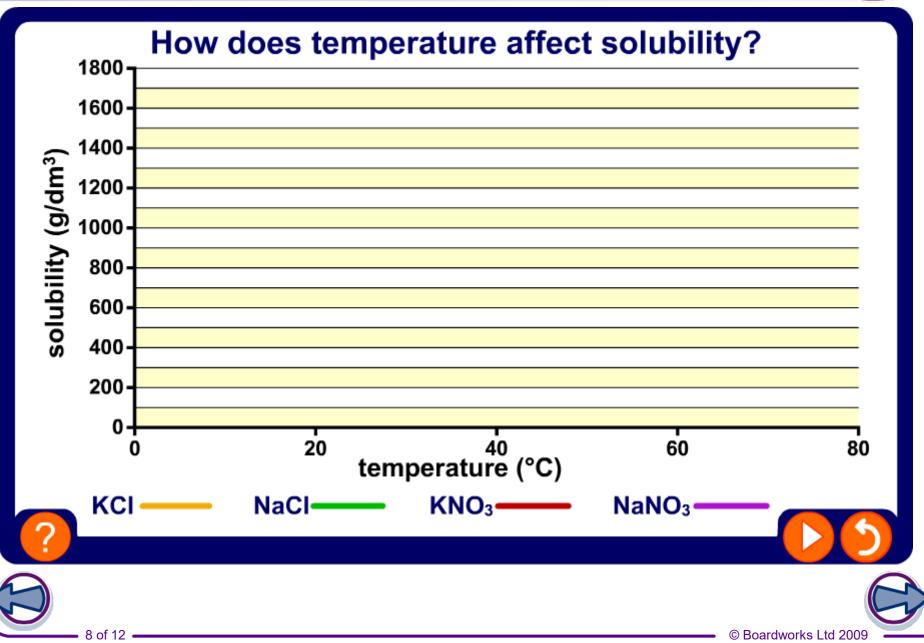
5 of 12

chloride	volume of water	mass of chloride that dissolved	
CuCl ₂	200 cm ³	151 g	
MgCl ₂	150 cm ³	80 g	
ксі	100 cm ³	30 g	
NaCl	200 cm³	72 g	
ZnCl ₂	150 cm ³	618 g	

The solubility of a substance depends on the temperature of the solvent. This table summarizes the effect of temperature on the solubility of four different solids:

	temperature				
	0°C	20°C	40°C	60°C	30°C
solid:	solubility (g/dm³)				
potassium chloride	280	342	401	458	513
sodium chloride	357	359	364	371	380
sodium nitrate	730	876	1020	1220	1480
potassium nitrate	139	316	613	1060	1670

How would you carry out this experiment?



7 of 12

Solubility and temperature graph

Saturation and crystallization

Solutions become **supersaturated** when they contain more solute than they would normally be able to dissolve.

This can happen when a saturated solution is cooled, or another change in conditions occurs that causes solubility to decrease.

The solute will stay in solution until a "seed" crystal is added. This causes it to crystallize out of the solution very quickly.

When it does this, it gives out heat energy.

9 of 12

Solubility of gases

Many gases are soluble in water. For example, fish can breathe because of the oxygen dissolved in water.

Carbonated drinks contain carbon dioxide that has been dissolved into them under pressure.

When the pressure inside the container is released, the carbon dioxide gas comes out of the solution, producing bubbles.

Solubility of gases and temperature

What happens to the solubility of gases as the temperature increases?

	temperature				
	0°C	20°C	50 °C		
gas:	solubility (g/dm³)				
nitrogen	0.029	0.019	0.012		
oxygen	0.069	0.043	0.027		
carbon dioxide	3.35	1.69	0.76		

If you leave a glass of soda for a few days, it goes flat.

If you left one glass of soda in the refrigerator and another beside the radiator, which is likely to go flat first?

Solubility: true or false?

© Boardworks Ltd 2009