
Boardworks High School Science

Opposing change

Whenever a change is made to a reversible reaction in dynamic equilibrium, the equilibrium will shift to try and oppose the change.

Condition	Effect
Temperature	Increasing the temperature shifts the equilibrium in the direction that takes in heat.
Concentration	Increasing the concentration of a substance shifts the equilibrium in the direction that produces less of that substance.
Pressure	Increasing the pressure shifts the equilibrium in the direction that produces less gas.

2 of 10

© Boardworks Ltd 2009

Exothermic and endothermic reactions

All reactions are **exothermic** (give out heat) in one direction and **endothermic** (take in heat) in the other.

If the temperature is **increased**:

- equilibrium shifts to decrease the temperature
- equilibrium shifts in the endothermic direction

If the temperature is **decreased**:

- equilibrium shifts to increase the temperature
- equilibrium shifts in the exothermic direction

Opposing changes in temperature

Nitrogen dioxide is in constant equilibrium with dinitrogen tetroxide. The forward reaction is **exothermic** and the backwards reaction is **endothermic**.

nitrogen dioxide	4	dinitrogen tetroxide		
2NO₂ (g)	4	N₂O₄ (g)		

What will happen if the temperature is **increased**?

- The equilibrium will shift to decrease the temperature, i.e. to the left (endothermic).
- More **NO**₂ will be produced.

If the temperature is **decreased**, more N_2O_4 will be produced.

4 of 10

Concentration and equilibrium

Changing the concentration of a substance affects the equilibrium of reversible reactions involving solutions.

increasing the substance A

equilibrium shifts to concentration of **= decrease** the amount of substance A

decreasing the substance A

equilibrium shifts to concentration of = **increase** the amount of substance A

Opposing changes in concentration (1)

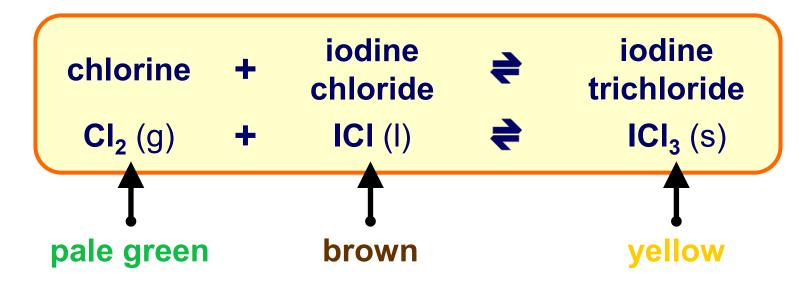
Bismuth chloride reacts with water to produce a white precipitate of bismuth oxychloride and hydrochloric acid.

bismuth chloride	+	water	4	bismuth oxychloride	+	hydrochloric acid
BiCl ₃ (aq)	+	H ₂ O (I)	+	BiOCI (s)	+	2HCI (aq)

What will happen if **more H₂O** is added?

- The equilibrium will shift to decrease the amount of water, i.e. to the right.
- More BiOCI and HCI will be produced.

6 of 10


If H_2O is **removed**, more **BiCl₃** and H_2O will be produced.

Opposing changes in concentration (2)

Chlorine gas reacts with iodine chloride to produce iodine trichloride.

What effect will adding **more Cl₂** have on the color of the mixture?

What effect will **removing Cl₂** have on the color of the mixture?

It will become more yellow. It will become

Pressure and equilibrium

Changing the pressure has an effect on the equilibrium of reversible reactions involving gases.

If the pressure is **increased**:

- equilibrium shifts to **decrease** the pressure
- equilibrium shifts in the direction of fewest molecules

If the pressure is **decreased**:

- equilibrium shifts to increase the pressure
- equilibrium shifts in the direction of most molecules

Opposing changes in pressure

Nitrogen dioxide is in constant equilibrium with dinitrogen tetroxide. Two molecules of nitrogen dioxide react to form one molecule of dinitrogen tetroxide.

nitrogen dioxide	~	dinitrogen tetroxide		
2NO₂ (g)	4	N₂O₄ (g)		

What will happen if the pressure is **increased**?

- The equilibrium will shift to **reduce** the number of molecules, i.e. to the right (only 1 molecule).
- More N_2O_4 will be produced.

If the pressure is **decreased**, more **NO₂** will be produced.

9 of 10

Dynamic equilibrium and change

© Boardworks Ltd 2009