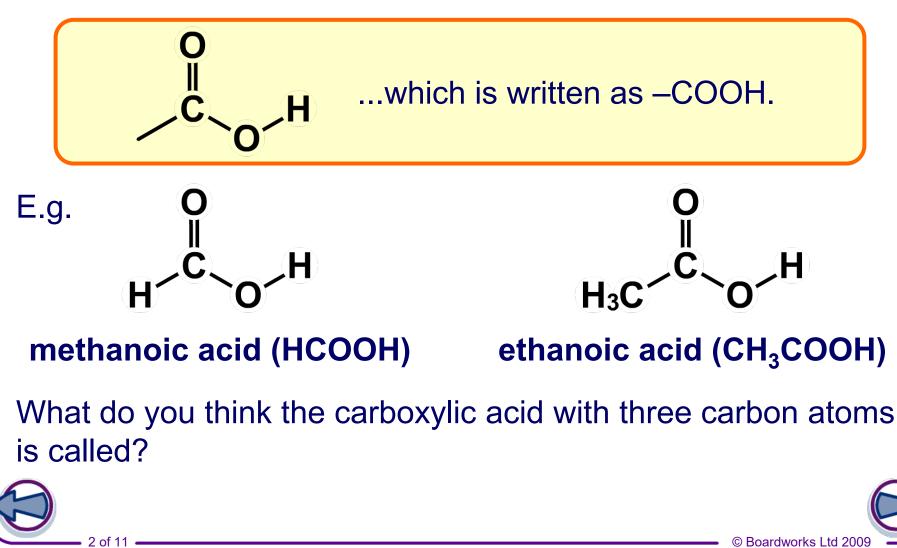
Boardworks High School Science



(**board** *works*)

Carboxylic acids contain a **functional group** of carbon, hydrogen and oxygen atoms arranged like this...

pentanoic acid

methanoic acid

butanoic acid

propanoic acid

ethanoic acid

hexanoic acid

3 of 11

CH₃COOH

CH₃CH₂CH₂CH₂COOH

CH₃CH₂COOH

HCOOH

CH₃CH₂CH₂CH₂CH₂COOH

CH₃CH₂CH₂COOH

© Boardworks Ltd 2009

If you leave wine standing open to the air, oxygen from the air will oxidize the ethanol to ethanoic acid, forming vinegar.

$$H_{3}C - \overset{H}{C} - O - H + O = O \rightarrow \overset{O}{H_{3}C} \overset{H}{-} O + \overset{H}{-} O \overset{H}{-} H$$

ethanol oxygen ethanoic acid water

In fact, any carboxylic acid can be made by **oxidizing** the corresponding alcohol.

UNYYCII

- Q) Which carboxylic acid is made when methanol is oxidized?
- A) Methanoic acid.

4 of 11

γιιαιισι

Properties of carboxylic acids

Carboxylic acids:

- have relatively high melting and boiling points
- are very soluble in water
- are weak acids

5 of 11

have a characteristic smell!

Examples of everyday carboxylic acids include:

- citric acid (found in citrus fruits)
- Iactic acid (found in tired muscles)
- malic acid (found in sour and tart foods).

Match the properties

Chemical properties of carboxylic acids

(board works)

Carboxylic acids are typical weak acids.

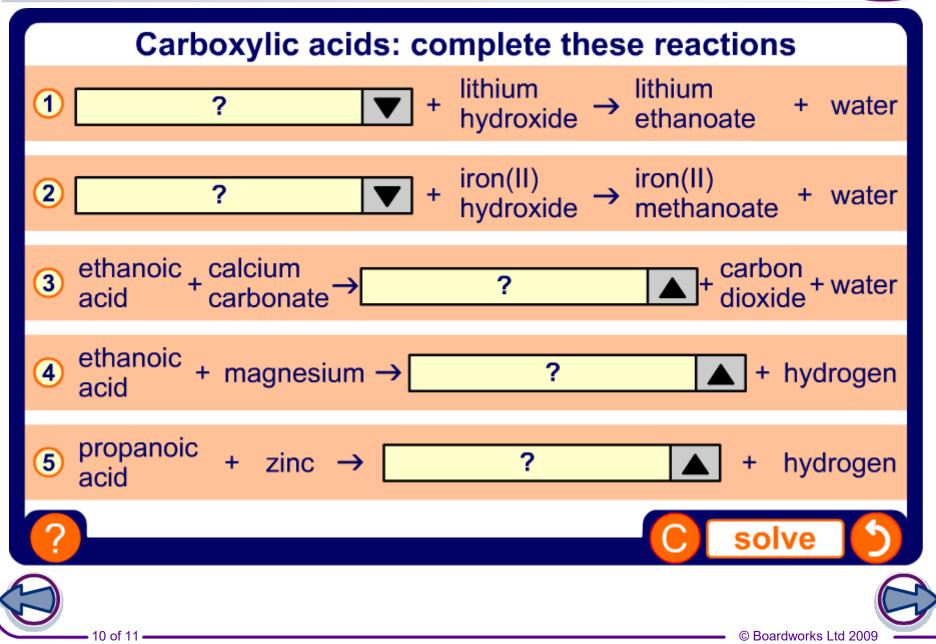
What would happen if you added a few cm³ of dilute ethanoic acid to each of these substances?

- A few drops of universal indicator.
- 3 cm³ sodium hydroxide solution.
- Half a spatula of sodium carbonate.
- A piece of magnesium ribbon.

Chemical properties of carboxylic acids								
Substance added	Observation	Explanation						
A few drops of universal indicator	Indicator turns yellow-orange	click to reveal						
3 cm ³ sodium hydroxide solution	No observable reaction	click to reveal						
Half a spatula of sodium carbonate	Carbon dioxide gas produced	click to reveal						
A piece of magnesium ribbon	Hydrogen gas produced	click to reveal						
?								

— 8 of 11 •

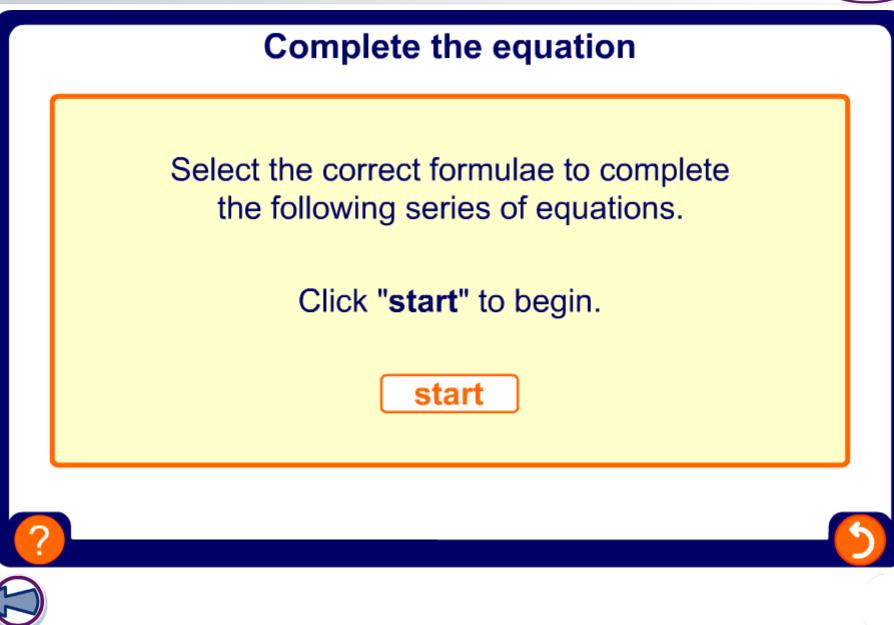
© Boardworks Ltd 2009



Carboxylic acids react like any other type of acid, forming salts when they react with alkalis, carbonates and metals:

ethanoic acid	+ k	<mark>sodium</mark> hydroxide	∍ →	sodium ethanoa		+	w	ate	r
CH₃COOH	+	NaOH	\rightarrow	CH ₃ COO	Na	+	H	1 ₂ 0	
ethanoic acid +		lium onate →		odium hanoate		cark diox		+	water
2CH₃COOH +	Na ₂	$CO_3 \rightarrow$	2CH	l ₃ COO <mark>Na</mark> +	•	СС	D ₂	+	H ₂ O
ethanoic acid	+	sodium	\rightarrow	sodium ethanoate	Ð	+	nydr	oge	en
2CH ₃ COOH	+	2Na	\rightarrow	2CH ₃ COO	la	+	H	2	
9 of 11							© Boardy		6

Reactions of carboxylic acids



11 of 11

© Boardworks Ltd 2009

