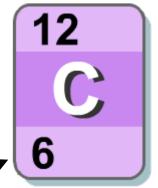


Atomic Number and Mass Number

12 **C** 6

How many protons?



The atoms of any particular element always contain the same number of protons. For example:

- hydrogen atoms always contain 1 proton
- carbon atoms always contain 6 protons
- magnesium atoms always contain 12 protons.

The number of protons in an atom is known as the atomic number or proton number.

It is the smaller of the two numbers shown in most periodic tables.

What is the atomic number?

What are the atomic numbers of these elements?

sodium	23 Na 11	11
iron	56 Fe 26	26
tin	119 Sn 50	50
fluorine	19 F 9	9

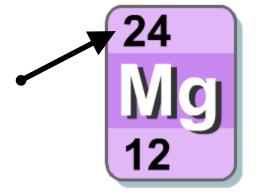
More about atomic number

Each element has a definite and fixed number of protons.

If the number of protons changes, then the atom becomes a different element.

Changes in the number of particles in the nucleus (protons or neutrons) are **very rare**. They only take place in nuclear processes such as:

- radioactive decay
- nuclear bombs
- nuclear reactors.



What is mass number?

Electrons have a mass of almost zero, which means that the mass of each atom results almost entirely from the number of protons and neutrons in the nucleus.

The sum of the protons and neutrons in an atom's nucleus is the mass number. It is the larger of the two numbers shown in most periodic tables.

Atoms	Protons	Neutrons	Mass number
hydrogen	1	0	1
lithium	3	4	7
aluminum	13	14	27

© Boardworks Ltd 2008

What's the mass number?

mass number = number of protons + number of neutrons

What is the mass number of these atoms?

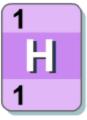
Atoms	Protons	Neutrons	Mass number
helium	2	2	4
copper	29	35	64
cobalt	27	32	59
iodine	53	74	127
germanium	32	41	73

How many neutrons?

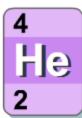
number of neutrons = mass number - number of protons = mass number - atomic number

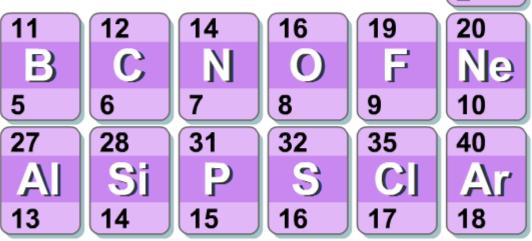
How many neutrons are there in these atoms?

Atoms	Mass number	Atomic number	Neutrons	
helium	4	2	2	
fluorine	19	9	10	
strontium	88	38	50	
zirconium	91	40	51	
uranium	238	92	146	



7 of 11 —


Building a nucleus


How many protons and neutrons are there in an element's nucleus?

Select an element to investigate its nucleus.

8 of 11 — © Boardworks Ltd 2008

How many electrons?

Atoms have no overall electrical charge and are **neutral**.

This means atoms must have an equal number of positive protons and negative electrons.

The number of electrons is therefore the same as the atomic number.

Atoms	Protons	Neutrons	Electrons	
helium	2	2	2	
copper	29	35	29	
iodine	53	74	53	

Atomic number is the number of protons rather than the number of electrons, because atoms can lose or gain electrons but do not normally lose or gain protons.

What are the missing numbers?

What are the missing numbers?

Atom	Protons	Neutrons	Electrons	Atomic number	Mass number
boron	5	6	? ▼	5	? ▼
potassium	? ▼	? ▼	19	19	39
chromium	24	28	24	? ▼	? ▼
mercury	? ▼	121	80	? ▼	201
argon	? ▼	? ▼	? ▼	18	40

■ 10 of 11 — © Boardworks Ltd 2008

Atoms: true of false?

■ 11 of 11 — © Boardworks Ltd 2008