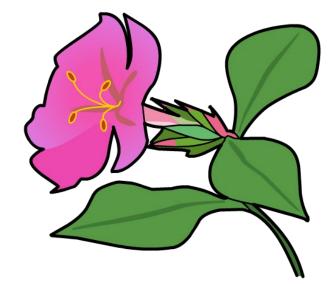


Incomplete Dominance and Codominance


What is incomplete dominance?

Sometimes two different alleles are neither fully dominant or recessive to each other.

In heterozygous individuals, this creates a phenotype that is an intermediate mix of the other two. This is called **incomplete dominance**.

For example, when a **red** *Mirabilis jalapa* plant (also called the snapdragon or 'four o'clock flower') is crossed with a white *Mirabilis jalapa* plant, all the offspring flowers are **pink** because both the red and white alleles are expressed.

What is codominance?

The human ABO blood group system is controlled by three alleles: **A**, **B** and **o**. **A** and **B** are dominant while **o** is recessive.

In heterozygous individuals who have both **A** and **B** alleles, both are fully expressed, creating an extra phenotype.

This is called codominance.

What is the pattern of inheritance of the ABO blood system?

Codominance in humans

Blood groups in the offspring of heterozygous parents

Humans have four different types of blood group, which are controlled by just three alleles (**A**, **B** and **o**).

If a person who is heterozygous for blood group **A** reproduces with someone who is heterozygous for blood group **B**, what are the possible blood groups of their offspring?

Click "start" to find out.

4 of 4 — © Boardworks Ltd 2009