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Information
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Random variables

A random variable, x, is a variable whose values are 
determined by chance, such as the outcome of rolling a die.

A continuous random variable is 
a random variable that can assume 
all values in an interval between 
any two given values, such as the 
real numbers, or an interval.

A discrete random variable is a 
random variable that can only take 
on a countable number of values, 
such as the integers, or a set of 
whole numbers.

e.g. {1, 2, 3, 4, 5, 6}

e.g. [0, 25]

What random variables 
relate to a ladybug 
population?
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Continuous vs. discrete variables
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Coin flip random variable

Suppose you flip a coin 20 times, and it lands heads up x times.

If you repeat this 
experiment, the value 
of x will likely change, 
but 0 ≤ x ≤ 20 and is a 
whole number.

x is a discrete random variable that counts the number of successful 
trials in the experiment (success is landing heads up).

x follows a binomial 
distribution.

What type of variable is x? What are its possible values?
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Binomial distribution

The characteristics of a binomial distribution are:

● two possible outcomes on each trial: 
success (S) and failure (F)

● the trials are independent of each other

● the binomial random variable x is the 
number of successes in the n trials.

● the probability of S is constant between trials: 
P(S) = p

● F is the complement of S: 
P(F) = 1 – P(S) = 1 – p = q
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Parameters

In general, a distribution is described by parameters. 
Parameters are known quantities of the distribution.

What parameters describe a binomial distribution?
● number of trials in the experiment, n

● probability of success, p

x ~ B(n, p) is common notation to say a random variable x follows a 
binomial distribution, with n trials and probability of success p.

Using this notation, write the distributions of:
1) a single fair coin landing heads up
2) the total number of heads after 10 flips of a coin that 

lands heads up 60% of the time.
1) x ~ B(1, 0.5) 2) x ~ B(10, 0.6)
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Binomial probabilities

b(k; n, p) nCk pk qn–k=

n!
k!(n – k)!=nCkRemember that

nCr is found on the “MATH” “PRB” 
menu on a graphing calculator.

n
k =

where n is the number of trials, k is the number 
of successes, p is the probability of success, 
and q = 1 – p is the probability of failure.

probability of a binomial experiment:
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Practice

A manufacturer determines that 5% of the computer chips 
produced are defective. What is the probability that a batch 
of 25 will have exactly 3 defective?

Let x be the number of defective chips out of 25 chips produced. 
Use the formula for the probability of a binomial experiment:

The probability of exactly 3 defectives is 0.0930.

P(x = 3) = b(3; 25, 0.05) (= nCk pk qn–k)

= 25C3(0.05)3(0.95)22

= (2300)(0.000125)(0.324)

= 0.0930 (to the nearest thousandth)
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Using binompdf(

n = 25, number of trials
p = 0.05, probability of success
x = 3, number of successes

● Scroll down to “binompdf(” and press 
“ENTER”, then key in the variables.

● Scroll to paste and press “ENTER” and 
press “ENTER” again to calculate.

How do you find b(3; 25, 0.05) 
directly using a graphing calculator?

● Press “2ND” “VARS” to get to the 
“DISTR” menu.
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Combining probabilities

= 0.277 + 0.365 + 0.231

A manufacturer determines that 5% of the computer chips 
produced are defective. What is the probability that a batch 
of 25 will have no more than 2 defective?

Let x be the number of defective chips out of 25 chips produced.

The probability of no more than 2 defective chips is 0.873.

P(x ≤ 2) = P(x = 0 or 1 or 2)

= P(x = 0) + P(x = 1) + P(x = 2)

= b(0; 25, 0.05) + b(1; 25, 0.05) + b(2; 25, 0.05)

= 25C0(0.05)0(0.95)25 + 25C1(0.05)1(0.95)24 + 25C2(0.05)2(0.95)23

= 0.873 (to the nearest thousandth) 
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Using lists to find probabilities

If x ~ B(25, 0.05), how do you find 
P(x ≤ 2) using a graphing calculator?

The probability of no more than 2 
defectives is about 0.873.

● Press “2ND” “VARS” for the “DISTR” 
menu. Scroll down to “binompdf(” and 
press “ENTER”.

● Fill in n = 25, p = 0.05 but leave x blank. 
Then select “paste” to populate L2 with 
the probability distribution.

● Use the “STAT” menu. Enter the 
numbers 0, 1, 2, in L1. Then select L2.

● Add the probabilities of 0, 1, and 2.
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Using binomcdf(

n = 25, p = 0.05, x = 2

● Scroll down to “binomcdf(” and press 
“ENTER”, then key in the variables.

● Scroll to paste and press “ENTER” and 
press “ENTER” again to calculate.

If x ~ B(25, 0.05), how do you find 
P(x ≤ 2) using a graphing calculator?

● Press “2ND” “VARS” function to get to 
the “DISTR” menu.

Verify that this is the same as 
b(0; 25, 0.05) + b(1; 25, 0.05) + b(2; 25, 0.05).
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Binomial probabilities
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Expected value

Distributions have a theoretical mean. This is also called the 
distribution mean or expected value.

expected value for 
binomial random variable: μ = np

For a binomial random variable, this is found by multiplying 
the number of trials (n) by the probability of success (p):

What is the expected number of heads for
1) 1 flip of a fair coin, x ~ B(1, 0.5)
2) 10 flips of a biased coin, x ~ B(10, 0.6).

1) μ = np = 1 × 0.5 = 0.5
2) μ = np = 10 × 0.6 = 6
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Variance and standard deviation

Distributions have a variance (σ2), which describes spread, 
i.e. the difference between the random variable and its mean.

distribution variance for 
binomial random variable: σ2 = npq = np(1 – p)

Variance depends on the parameters of the distribution.

distribution standard deviation 
for binomial random variable:

σ = √npq = √np(1 –
p)

Standard deviation is the square root of variance (σ), and it 
describes the expected difference between the mean and the 
random variable.
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Statistics

A statistic is a function of random variables.

Usually, a statistic tries to estimate the 
value of a parameter of a distribution.

The parameters of the distribution might not be known.

For example, you might wish to 
determine the probability that a 
biased coin lands head up.

Here, you know the distribution is 
binomial, but you do not know p.
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μ =

Sample mean

The sample mean is an important statistic. It tries to estimate 
the mean of a distribution based on different trials.

● n is the number of trials
● xi is the value of the random 

variable on trial i
● ∑ is the sum over all trials.

sample mean formula: ∑xi
n

x1 + x2 + … + xn–1 + xn
n

Sample mean is denoted by the Greek letter μ with a bar over 
the top.

=
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A communication system sends data as a digital signal 
of bits: either 0 or 1. The digital signal is corrupted by 
noise, and the probability that the noise changes a bit 
from 0 to 1 (or 1 to 0) is 0.01. 

What is the expected number of incorrect bits if 100 are 
sent? Model this problem using a binomial distribution.

● each bit is a trial and there are 100 bits, so n = 100
● the probability of an error is 0.01, so p = 0.01
model the total number of errors 

as a random variable:
find the expected 
number of errors:

Bit errors in communication system

x ~ B(100, 0.01)

μ = np = 100 × 0.01 = 1
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Sample variance

Sample variance (s2) and standard deviation (s) describe the 
difference between individuals and the sample mean.

sample 
variance:

s2 =
∑(xi  – μ)2

n

sample standard 
deviation:

s =
√∑(xi  – μ)2

√n
● n is the number of trials
● xi is the value of the random 

variable on trial i
● ∑ is the sum over all trials
● μ is the sample mean.
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Common discrete distributions
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Modeling with distributions
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