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Information
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Graphs of the form y = kxn
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Cubic functions

f (x) = x3parent function:

vertical asymptote:

domain:

range:

none

none

(– ∞, ∞)

roots: x = 0

horizontal asymptote:

(– ∞, ∞)
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Using a table of values

Plot the graph of y = x3 – 7x + 2 for values of x between –3 
and 3.

Plot the points from the table on 
the graph paper.

Join the points together with a 
smooth curve.

Complete the table of values.
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Exploring cubic graphs
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General form

general cubic function:

vertical asymptote:

horizontal asymptote:

domain:

range:

none

none

f (x) = ax3 + bx2 + cx + d
where a ≠ 0

When the coefficient of x3 is 
positive the shape is:

When the coefficient of x3 is 
negative the shape is:

or

or

(– ∞, ∞)

(– ∞, ∞)
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Sketching graphs

What can we find to help us sketch the graph of a function?

2) find any points where the curve intersects the x-axis by solving f (x) = 0

1) find the point where the curve intersects the y-axis by evaluating f (0)

5) estimate turning points.

3) predict the behavior of y when x is very large and positive

4) predict the behavior of y when x is very large and negative

When a cubic function is written in factored form 
y = a(x – p)(x – q)(x – r), where does it intersect the x-axis?

The graph intersects the x-axis at the points (p, 0), (q, 0) and (r, 0). 
p, q and r are the roots of the cubic function.
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Sketching cubic graphs (1)

Sketch the graph of y = x3 + 2x2 – 3x.

f (0) = 03 + 2(0)2 – 3(0)

f (0) = 0

The curve passes through the point (0, 0).

x3 + 2x2 – 3x = 0

x(x2 + 2x – 3) = 0

x(x + 3)(x – 1) = 0

x = 0,   x = –3   or   x = 1

The curve also passes through the points (–3, 0) and (1, 0).

set f (x) = 0:

evaluate f (0):

GCF:

by grouping:

zero product:

1) find y-intercept:

2) find x-intercepts:
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Sketch the graph of y = x3 + 2x2 – 3x.

Sketching cubic graphs (2)

y → ∞3) as x → ∞,

4) as x → –∞, y → –∞

5) estimate turning points:

between –3 and 0 
and 0 and 1

f (–1.5) = 5.625

f (0.5) = –0.875

since cubic: at most 2 turning points

x-value:

estimate y:
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Multiple zeros

Now describe the behavior 
of the graph at each zero.

Give the multiplicity of each zero in the function
y = (x + 2)(x + 1)2(x – 1)3.

Do you notice a pattern? 

x = –2 has multiplicity 1

x = –1 has multiplicity 2

x = 1 has multiplicity 3.

The behavior of a graph at a zero of multiplicity n
resembles the behavior of y = xn at zero.
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Multiple zeros example

Sketch the graph of y = (x + 1)2(x – 1).

Since x = –1 is a zero of multiplicity 2, the behavior of the graph 
at –1 is similar to quadratic, so that is a relative maxima.

f (0) = –1
The curve passes through (0, –1).

evaluate f (0):

set f (x) = 0: (x + 1)2(x – 1) = 0
zero product property: x = –1 or x = 1

5) estimate turning points:

The curve passes through (–1, 0) and (1, 0).
y → ∞3) as x → ∞,

4) as x → –∞, y → –∞

1) find y-intercept:

2) find x-intercepts:
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Sketching quartic graphs (1)

Sketch the graph of y = x4 – 5x2 + 4.

f (0) = 04 – 5(0)2 + 4
f (0) = 4

The curve passes through the point (0, 4).

x4 – 5x2 + 4 = 0

(x + 1)(x – 1)(x + 2)(x – 2) = 0

x = ±1 and x = ± 2

The curve also passes through the points (–2, 0), (–1, 0), (1, 0) and (2, 0).

set f (x) = 0:

evaluate f (0):

(x2)2 – 5(x2) + 4 = 0
(x2 – 1)(x2 – 4) = 0

difference 
of squares:

1) find y-intercept:

2) find x-intercepts:

zero product 
property:
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Sketch the graph of y = x4 – 5x2 + 4.

Sketching quartic graphs (2)

5) estimate turning points:

f (0) = 4

f (–1.5) = –2.1875

f (1.5) = –2.1875

y → ∞3) as x → ∞,

4) as x → –∞, y → ∞

since quartic:

x-value:

estimate y:

between –1 and 1, 
between –2 and –1,
and between 1 and 2

at most 3 turning points
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Transforming cubic functions
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Types of transformation
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A4 box
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