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Information
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Solving exponential equations

Simple exponential equations such as 5x = 125 can be 
solved by observation. Solution: x = 3, since 53 = 125.

How would you solve the equation 5x = 25x+1?

Also, exponential equations containing terms with the same 
base can be solved by equating exponents. 

For example, 
x + 3 = 2x

3 = x
equate exponents:

solve:

5x = (52)x+1

5x = 52x+2

x = 2x + 2
x = –2

rewrite in base 5:
distribute:

equate exponents:
solve:

7x+3 = 72x
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Using logarithms

When we cannot find the value of x by observation, we need to 
be able to find the inverse of the exponential.

How can we find the value of k in the equation 2k = 35?

k = ?
2k = 35

solve:

The inverse of an exponential is called a logarithm.

logarithm:
if x = ay, then y = loga x

for a positive value of x
and for a > 0, a ≠ 1

Can you rewrite the equation 2k = 35 using logarithms?
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Using logarithms

Rewrite 2k = 35 using the definition of a logarithm.
2k = 35
k = log2 35

This is now an equation in k that can be solved by evaluating 
the logarithm base 2 of 35.
However, there is no button on a standard 
calculator to find logarithms base 2, only 
base 10 (“log”) or base e (“ln”).

To solve this equation, there are two options:
● take logarithms base 2, then change 

the logarithmic base to 10 or e
● take logarithms base 10 or e.

if x = ay then y = loga x:
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Review of logarithmic rules
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Solving exponential equations
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Solving logarithmic equations

Some logarithmic equations can be solved by observation.

How would you solve the equation ln x = log25?

Logarithmic equations containing terms with the same 
logarithmic base can be solved by equating arguments. 

x + 1 = 9
x = 8

equate arguments:
solve:

Solve the equation ln (x + 1) = ln 9.

For example, solve: log x = 2.
Since 102 = 100, x = 100.

ln (x + 1) = ln 9



9 of 17 © Boardworks 2013

Solving logarithmic equations

How would you solve the equation ln x = log2 5?

ln x =

ln x = 2.3219
x = e2.3219

x = 10.20 to nearest hundredth

change right side to base e:

evaluate:
by definition of natural logarithm:

evaluate:

Write both terms in the same logarithmic base, then equate arguments. 
ln x = log25

ln 5
ln 2

Write the constant value 3 in the form log4 x.
3 = 3(log4 4)
3 = log4 (43)

since log4 4 = 1:
exponent rule:

simplify: 3 = log4 64
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Solving logarithmic equations

To solve this equation, all the terms must be logarithms in the same base.
First, write the constant value 2 in logarithmic form.

2 = 2 log5 5
2 = log5 (52)

The equation can now be written as:

log5 x + log5 25 = log5 10 

log5 (25x) = log5 10 

25x = 10 

x = 0.4

Solve log5 x + 2 = log5 10.

since log5 5 = 1:
exponent rule:

simplify: 2 = log5 25

product rule:

equate arguments:

evaluate:
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Be careful!

Remember, the argument of a logarithm (i.e. the “x” in log x) 
must be a positive number.

Always check your solution in the original
logarithmic expression(s) to make sure it is valid.

For which values of x is the expression 
log (x + 1) valid?

The argument of the logarithm must be positive.

x + 1 > 0
x > –1

The expression is valid for any values of x greater than –1.
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Practice questions
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Savings account

Hayley puts $1000 into a new savings account 
with a 2.7% monthly compound interest rate. 

Write a formula for A, the amount in her 
account, after n months of saving.
Use your formula to calculate:
a) the amount Hayley will have after 2 years
b) the number of months it will take for the 
account to contain $1500.

a) The rate is 2.7%, so for every month, n, the amount will be multiplied 
by 1.027 (starting with the original amount, $1000.)

A function to describe the amount, A, after n months is: 
A = 1000(1.027n)
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Savings account

To find the number of months it will take for the 
account to contain $1500, substitute A = 1500
into the equation.

The amount, A, after n months is: 
A = 1000(1.027n)

1500 = 1000(1.027n)
1.5 = 1.027n

ln 1.5 = ln (1.027n)
ln 1.5 = n ln 1.027

n = ln 1.5 / ln 1.027

n = 15.2 ≈ 16 months to the nearest 
whole month

substitute A = 1500:
divide by 1000:

take logarithms:
exponent rule:

rearrange:
evaluate:
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The pH scale
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Bacterial decay

A man has a bacterial infection. There are 100,000 bacteria 
present, but when an antibiotic is introduced, the number of 
bacteria is reduced by half every 2 hours.

a) Write a function to model the number of bacteria after 
h hours.
b) A person is considered “cured” of this infection when 
fewer than 1000 bacteria are present. How long, to the 
nearest hour, until the man is cured?

a) After 2 hours, there are 100,000(0.5).
After 4 hours, there are 100,000(0.52).
After 6 hours, there are 100,000(0.53).

A function to model the number of bacteria (y) 
after h hours is: y = 100,000(0.5h/2)
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Bacterial decay

b) To find the number of hours until the man is 
“cured” (i.e. there are fewer than 1000 bacteria 
present), substitute y = 1000 into the function.

A function to model the number of bacteria (y) after h hours is: 
y = 100,000(0.5h/2)

1000 = 100,000(0.5h/2)
0.01 = 0.5h/2

ln 0.01 = ln (0.5h/2)
ln 0.01 = (h / 2) ln 0.5

h = 2(ln 0.01 / ln 0.5)

h = 13.3 ≈ 14 hours
to the nearest hour

substitute y = 1000:
divide by 100,000:

take logarithms:
exponent rule:

rearrange:
evaluate:
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